Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster

نویسندگان

  • Janet S Mason
  • Tom Wileman
  • Tracey Chapman
چکیده

Autophagy is a highly conserved mechanism for cellular repair that becomes progressively down-regulated during normal ageing. Hence, manipulations that activate autophagy could increase lifespan. Previous reports show that manipulations to the autophagy pathway can result in longevity extension in yeast, flies, worms and mammals. Under standard nutrition, autophagy is inhibited by the nutrient sensing kinase Target of Rapamycin (TOR). Therefore, manipulations of TOR that increase autophagy may offer a mechanism for extending lifespan. Ideally, such manipulations should be specific and minimise off-target effects, and it is important to discover additional methods for 'clean' lifespan manipulation. Here we report an initial study into the effect of up-regulating autophagy on lifespan and fertility in Drosophila melanogaster by dietary addition of Torin1. Activation of autophagy using this selective TOR inhibitor was associated with significantly increased lifespan in both sexes. Torin1 induced a dose-dependent increase in lifespan in once-mated females. There was no evidence of a trade-off between longevity and fecundity or fertility. Torin1-fed females exhibited significantly elevated fecundity, but also elevated egg infertility, resulting in no net change in overall fertility. This supports the idea that lifespan can be extended without trade-offs in fertility and suggest that Torin1 may be a useful tool with which to pursue anti-ageing research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans.

It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism r...

متن کامل

β‐Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP‐activated protein kinase‐dependent increase in autophagy

Previous studies have demonstrated that AMP-activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc-51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β-guanidinopropionic acid (β-GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β-GPA and aging ...

متن کامل

Dietary Restriction Extends Lifespan in Wild-Derived Populations of Drosophila melanogaster

Dietary restriction (DR) can result in lifespan-extension and improved function and health during ageing. Although the impact of DR on lifespan and health has been established in a variety of organisms, most DR experiments are carried out on laboratory strains that have often undergone adaptation to laboratory conditions. The effect of DR on animals recently derived from wild populations is rar...

متن کامل

Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance

BACKGROUND This study was conducted to evaluate the effects of rhizome powder from the herb Rhodiola rosea, a traditional Western Ukraine medicinal adaptogen, on lifespan and age-related physiological functions of the fruit fly Drosophila melanogaster. RESULTS Flies fed food supplemented with 5.0 mg/ml and 10.0 mg/ml of R. rosea rhizome powder had a 14% to 17% higher median lifespan, whereas ...

متن کامل

Drosophila lifespan control by dietary restriction independent of insulin-like signaling

Reduced insulin/insulin-like growth factor (IGF) signaling may be a natural way for the reduction of dietary nutrients to extend lifespan. While evidence challenging this hypothesis is accumulating with Caenorhabditis elegans, for Drosophila melanogaster it is still thought that insulin/IGF and the mechanisms of dietary restriction (DR) might as yet function through overlapping mechanisms. Here...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018